Center of Mass and Centroids

$$
\bar{x}=\frac{\int x d m}{m} \quad \bar{y}=\frac{\int y d m}{m} \quad \bar{z}=\frac{\int z d m}{m}
$$

Centroids of Lines, Areas, and Volumes

Centroid is a geometrical property of a body

\rightarrow When density of a body is uniform throughout, centroid and CM coinçide

Lines: Slender rod, Wire
Cross-sectional area $=A$
ρ and A are constant over L
$d m=\rho A d L$; Centroid $=C M$
$\bar{x}=\frac{\int x d L}{L} \quad \bar{y}=\frac{\int y d L}{L} \quad \bar{z}=\frac{\int z d L}{L}$

Areas: Body with small but constant thickness t
Cross-sectional area $=A$
ρ and A are constant over A $d m=\rho t d A$; Centroid $=C M$
$\bar{x}=\frac{\int x d A}{A} \quad \bar{y}=\frac{\int y d A}{A} \quad \bar{z}=\frac{\int z d A}{A}$
Numerator $=$ First moments of Area

Volumes: Body with volume V
ρ constant over V
$d m=\rho d V \quad$ Centroid $=C M$
$\bar{x}=\frac{\int x d V}{V} \quad \bar{y}=\frac{\int y d V}{V} \quad \bar{z}=\frac{\int z d V}{V}$

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes

Guidelines for Choice of Elements for Integration

- Order of Element Selected for Integration

A first order differential element should be selected in preference to a higher order element \rightarrow only one integration should cover the entire figure

$A=\int d A=\int l d y$

$A=\iint d x d y$

$V=\int d V=\int \pi r^{2} d y \quad V=\iiint d x d y d z$

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes

Guidelines for Choice of Elements for Integration

- Continuity

Choose an element that can be integrated in one continuous operation to cover the entire figure \rightarrow the function representing the body should be continuous
\rightarrow only one integral will cover the entire figure

Continuity in the expression for the width of the strip

Discontinuity in the expression for the height of the strip at $x=x_{1}$

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes

Guidelines for Choice of Elements for Integration

- Discarding Higher Order Terms

Higher order terms may always be dropped compared with lower order terms

Vertical strip of area under the curve is given by the first order term $\rightarrow d A=y d x$ The second order triangular area $0.5 d x d y$ may be discarded

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes

Guidelines for Choice of Elements for Integration

- Choice of Coordinates

Coordinate system should best match the boundaries of the figure
\rightarrow easiest coordinate system that satisfies boundary conditions should be chosen

Boundaries of this area (not circular) can be easily described in rectangular coordinates

Boundaries of this circular sector are best suited to polar coordinates

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes

Guidelines for Choice of Elements for Integration

- Centroidal Coordinate of Differential Elements

While expressing moment of differential elements, take coordinates of the centroid of the differential element as lever arm
(not the coordinate describing the boundary of the area)

Modified
Equations

$$
\bar{x}=\frac{\int x_{c} d A}{A} \quad \bar{y}=\frac{\int y_{c} d A}{A} \quad \bar{z}=\frac{\int z_{c} d A}{A}
$$

$$
\bar{x}=\frac{\int x_{c} d V}{V} \quad \bar{y}=\frac{\int y_{c} d V}{V} \quad \bar{z}=\frac{\int z_{c} d V}{V}
$$

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes

Guidelines for Choice of Elements for Integration

1. Order of Element Selected for Integration
2. Continuity
3. Discarding Higher Order Terms
4. Choice of Coordinates
5. Centroidal Coordinate of Differential Elements
$\bar{x}=\frac{\int x d L}{L} \quad \bar{y}=\frac{\int y d L}{L} \quad \bar{z}=\frac{\int z d L}{L}$

$$
\bar{x}=\frac{\int x_{c} d V}{V} \quad \bar{y}=\frac{\int y_{c} d V}{V} \quad \bar{z}=\frac{\int z_{c} d V}{V}
$$

$$
\bar{x}=\frac{\int x_{c} d A}{A} \quad \bar{y}=\frac{\int y_{c} d A}{A} \quad \bar{z}=\frac{\int z_{c} d A}{A}
$$

